
MATH 245 F17, Exam 1 Solutions

1. Carefully define the following terms: ≤ (for integers, as defined in Chapter 1), factorial, Associativity theorem
(for propositions), Distributivity theorem (for propositions).

Let a, b be integers. We say that a ≤ b if b− a ∈ N0. The factorial is a function from N0 to Z (or N), denoted
by !, defined by: 0! = 1 and n! = (n − 1)! · n (for n ≥ 1). The Associativity theorem says: Let p, q, r be
propositions. Then (p ∧ q) ∧ r ≡ p ∧ (q ∧ r) and also (p ∨ q) ∨ r ≡ p ∨ (q ∨ r). The Distributivity theorem says:
Let p, q, r be propositions. Then p ∧ (q ∨ r) ≡ (p ∧ q) ∨ (p ∧ r) and also p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r).

2. Carefully define the following terms: Addition semantic theorem, Contrapositive Proof theorem, Direct Proof,
converse.

The Addition semantic theorem states that for any propositions p, q, we have p ` p ∨ q. The Contrapositive
Proof theorem states that for any propositions p, q, if (¬q) ` (¬p) is valid, then p → q is T The Direct Proof
theorem states that for any propositions p, q, if p ` q is valid, then p → q is T . The converse of conditional
proposition p→ q is q → p.

3. Let a, b be odd. Prove that 4a− 3b is odd.
Because a is odd, there is integer c with a = 2c + 1. Because b is odd there is integer d with b = 2d + 1. Now,
4a− 3b = 4(2c+ 1)− 3(2d+ 1) = 8c+ 4− 6d− 3 = 2(4c− 3d) + 1. Because 4c− 3d is an integer, 4a− 3b is odd.

4. Suppose that a|b. Prove that a|(4a− 3b).

Because a|b, there is integer c with b = ca. Now, 4a− 3b = 4a− 3(ca) = a(4− 3c). Because 4− 3c is an integer,
a|(4a− 3b).

5. Simplify ¬((p→ q) ∨ (p→ r)) to use only ¬,∨,∧, and to have only basic propositions negated.

Applying De Morgan’s law, we get (¬(p→ q))∧ (¬(p→ r)). Applying a theorem from the book (2.16), we get
(p∧(¬q))∧(p∧(¬r)). Applying associativity and commutativity of ∧ several times, we get (p∧p)∧(¬q)∧(¬r).
Applying a theorem from the book (2.7), we get p ∧ (¬q) ∧ (¬r).

6. Without truth tables, prove the Constructive Dilemma theorem, which states: Let p, q, r, s be propositions.
p→ q, r → s, p ∨ r ` q ∨ s.

Because p ∨ r is T (by hypothesis), we have two cases: p is T or r is T . If p is T , we apply modus ponens to
p→ q to conclude q. We then apply addition to get q ∨ s. If instead r is T , we apply modus ponens to r → s
to conclude s. We apply addition to get q ∨ s. In both cases q ∨ s is T .

7. State the Conditional Interpretation theorem, and prove it using truth tables.

The CI theorem states:
Let p, q be propositions. Then p→ q ≡ q ∨ (¬p).
Proof: The third and fifth columns in the truth table
at right, as shown, agree. Hence p→ q ≡ q ∨ (¬p).

p q p→ q ¬p q ∨ (¬p)
T T T F T
T F F F F
F T T T T
F F T T T

8. Let x ∈ R. Suppose that bxc = dxe. Prove that x ∈ Z.

First, bxc ≤ x by definition of floor. Second, x ≤ dxe by definition of ceiling. But since bxc = dxe, in fact
x ≤ bxc. Combining with the first fact, x = bxc. Since bxc is an integer, so is x.

9. Prove or disprove: For arbitrary propositions p, q, (p ↓ q)→ (p ↑ q) is a tautology.

Since the fifth column in the truth table at right, as
shown, is all T , the proposition (p ↓ q) → (p ↑ q) is
indeed a tautology.

p q p ↓ q p ↑ q (p ↓ q)→ (p ↑ q)
T T F F T
T F F T T
F T F T T
F F T T T

10. Prove or disprove: For arbitrary x ∈ R, if x is irrational then 2x− 1 is irrational.

The statement is true, we provide a contrapositive proof. Suppose that 2x − 1 is rational. Then there are
integers a, b, with b nonzero, such that 2x − 1 = a

b . We have 2x = a
b + 1 = a+b

b , and x = a+b
2b . Now, a + b, 2b

are integers, and 2b is nonzero, so x is rational.


