10.

MATH 245 F17, Exam 1 Solutions

Carefully define the following terms: < (for integers, as defined in Chapter 1), factorial, Associativity theorem
(for propositions), Distributivity theorem (for propositions).

Let a,b be integers. We say that a < b if b — a € Ng. The factorial is a function from Ny to Z (or N), denoted
by !, defined by: 0! = 1 and n! = (n — 1)! - n (for n > 1). The Associativity theorem says: Let p,q,r be
propositions. Then (p Ag) Ar=pA(gAr)and also (pV q)Vr=pV (¢Vr). The Distributivity theorem says:
Let p, ¢, r be propositions. Then pA (gVr)=(pAq)V(pAr)and alsopV (gAr)=(pVag)A(pVr).

Carefully define the following terms: Addition semantic theorem, Contrapositive Proof theorem, Direct Proof,
converse.

The Addition semantic theorem states that for any propositions p,q, we have p F p V ¢. The Contrapositive
Proof theorem states that for any propositions p, g, if (—¢q) b (—p) is valid, then p — ¢ is T The Direct Proof
theorem states that for any propositions p,q, if p F ¢ is valid, then p — ¢ is T. The converse of conditional
proposition p — q is ¢ — p.

Let a,b be odd. Prove that 4a — 3b is odd.
Because a is odd, there is integer ¢ with a = 2¢ + 1. Because b is odd there is integer d with b = 2d + 1. Now,
4a—3b=4(2c+1)—3(2d+1) =8c+4—6d —3 = 2(4c—3d) + 1. Because 4c — 3d is an integer, 4a — 3b is odd.

Suppose that a|b. Prove that a|(4a — 3b).

Because a|b, there is integer ¢ with b = ca. Now, 4a — 3b = 4a — 3(ca) = a(4 — 3¢). Because 4 — 3¢ is an integer,
a|(4a — 3b).

Simplify =((p — q) V (p — r)) to use only —, V, A, and to have only basic propositions negated.

Applying De Morgan’s law, we get (=(p — q)) A (—=(p — r)). Applying a theorem from the book (2.16), we get
(pA(—q))A(pA(—r)). Applying associativity and commutativity of A several times, we get (pAp) A (—q) A (—r).
Applying a theorem from the book (2.7), we get p A (—gq) A (—r).

Without truth tables, prove the Constructive Dilemma theorem, which states: Let p,q,r, s be propositions.
p—qnr—s,pVrkqVs.

Because p V r is T (by hypothesis), we have two cases: pis T or r is T. If p is T, we apply modus ponens to
p — ¢ to conclude q. We then apply addition to get ¢ V s. If instead r is T, we apply modus ponens to r — s
to conclude s. We apply addition to get ¢ V s. In both cases ¢ V s is T

State the Conditional Interpretation theorem, and prove it using truth tables.

The CI theorem states: p g p—~q —p qV(-p)
Let p, q be propositions. Then p — ¢ = q V (—p). T T T F T
Proof: The third and fifth columns in the truth table T F F F F
at right, as shown, agree. Hence p — q = q V (—p). F T T T T

F F T T T

Let € R. Suppose that || = [z]. Prove that x € Z.

First, || < x by definition of floor. Second, x < [z] by definition of ceiling. But since [z| = [z], in fact
x < |z|. Combining with the first fact, © = |z]. Since |z] is an integer, so is x.

Prove or disprove: For arbitrary propositions p, g, (p | ¢) = (p T q) is a tautology.

Since the fifth column in the truth table at right, as P ¢ plgqg pltqg (plg—(®1Tq
shown, is all T, the proposition (p | ¢) = (pt¢qis T T F F T
indeed a tautology. T F F T T

F T F T T

F F T T T

Prove or disprove: For arbitrary € R, if z is irrational then 2z — 1 is irrational.

The statement is true, we provide a contrapositive proof. Suppose that 2z — 1 is rational. Then there are
integers a, b, with b nonzero, such that 2z —1 = ¢. We have 2z = ¢ +1 = “T'H’, and z = aTng Now, a + b,2b
are integers, and 2b is nonzero, so x is rational.



